If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-G^2+8G+10
We move all terms to the left:
-(-G^2+8G+10)=0
We get rid of parentheses
G^2-8G-10=0
a = 1; b = -8; c = -10;
Δ = b2-4ac
Δ = -82-4·1·(-10)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{26}}{2*1}=\frac{8-2\sqrt{26}}{2} $$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{26}}{2*1}=\frac{8+2\sqrt{26}}{2} $
| 9.9/7.5=x/5 | | 6(d-5)=-30+6d | | -3/4x=-15 | | 493x=49 | | 1(x+2)=28 | | 3.7+10m=6.18 | | 0.3(2x+3)1.1=-0.2(x-3)-1.8 | | 1(x+2)=25 | | 3x=4x-49 | | 1(x=2)=28 | | 1.025v+2.458=7.593 | | 7^2x=25 | | T=4s+3.16 | | -13=8-6p—7p | | 2(x+2)=43/4 | | w+45=315 | | 3z=363 | | w-315=45 | | -2π+d=-3π | | w-45=315 | | 15(-42x+40)=15(-18x+244) | | 7(x-8)=5x+40 | | 2x+8=2(-x+4) | | 2z-7-5z-21=0 | | 5a+14+2a-9=180 | | 6+17z=13z=18 | | |1/3x-2|=7 | | 7(x+2)+5(x+2)=6x-6 | | -6+36=-2r-6 | | 14x+2(0)=10 | | ½y=8 | | 13,4x-7,9=10,9x+12,1 |